
PETSc: Next Generation Readiness

Background

• PETSc provides

• Algebraic solvers

• Integrators

• Adjoints

• Optimization (Tao)

• High level libraries (libMesh, Moose, Firedrake) and 

application codes provide the rest

• PETSc is organized as a class library. “All” numerical 

computation and memory usage occurs within 

• Vector classes

• Matrix classes

• code under the users responsibility



PETSc: Next Generation Readiness
Computer Model

• MPI based
• Fat nodes
• N shared memory CPUs
• m < N physical accelerators with significant memory
• m <= M < N virtual accelerators
• Accelerators provide 95+% of the system’s
• Computation performance (flops)
• Memory bandwidth

• Bandwidth between CPUs and accelerators low
• MPI may or may not connect directly to accelerator 

memory (optimization)
• Local accelerators may or may not connect directly 

to neighboring accelerators (optimization)



PETSc: Next Generation Readiness
PETSc Programming Model (1)

Application Codes
• PETSc
• OpenMP 5
• Other higher node level programming models??
• Kokkos
• Lower level programming models 
• CUDA
• OpenCL
• Other lower level programming models ??



PETSc: Next Generation Readiness
PETSc Programming Model (2)

PETSc
• Orchestration code (C) runs on the M (MPI rank) CPUs
• Vector and matrix class runs on the 
• N CPUs (OpenMP) (limited usage)
• M virtualized accelerators
• CUDA
• OpenCL
• ???

• Vector and matrix classes transparently manage data 
motion (or perceived) motion between CPU and accelerator 
memory via
• VecGetArray(), VecGetArrayRead(), VecGetArrayWrite()
• VecCUDAGetArray(), VecCUDAGetArrayRead(), 

VecCUDAGetArrayWrite()



PETSc: Next Generation Readiness
PETSc Programming Model (3)• Goal: 

• Essentially “all” PETSc and “all” user computation and 
data reside on the accelerators.

• CPUs orchestrate the computation and do the little work 
that cannot be done on the accelerators

• Route: 
• Move more PETSc matrix operations to accelerators
• Optimize accelerator code
• Additional implementations of accelerator code based 

on ??
• Fuse vector and matrix methods in accelerator code for 

higher performance
• Optimize MPI by pass for local accelerators and send 

directly from accelerator memory


